
Networked Optimization with Adaptive
Communication

Konstantinos I. Tsianos, Sean F. Lawlor, Jun Ye Yu, and Michael G. Rabbat
Department of Electrical and Computer Engineering

McGill University
Montréal, Québec, Canada

Email: {konstantinos.tsianos, sean.lawlor, jun.y.yu}@mail.mcgill.ca, michael.rabbat@mcgill.ca

Abstract—Methods for distributed optimization are necessary
to solve large-scale problems such as those becoming more
common in machine learning. The communication cost associated
with transmitting large messages can become a serious perfor-
mance bottleneck. We propose a consensus-based distributed
algorithm to minimize a convex separable objective. Each node
holds one component of the objective function, and the nodes
alternate between a computation phase, where local gradient
steps are performed based on the local objective, and a commu-
nication phase, where consensus steps are performed to bring the
local states into agreement. The nodes use local decision rules to
adaptively determine when communication is not necessary. This
results in significantly lower communication costs and allows a
user to tradeoff the amount of communication with the accuracy
of the final output. Experiments on a cluster using simulated and
real datasets illustrate the tradeoff.

I. INTRODUCTION

In this paper we present a consensus-based distributed op-
timization algorithm aimed at adaptively eliminating unneces-
sary or redundant communications. Our algorithm interleaves
communication and computation phases in order to bring a
network of processors into agreement on the minimum of a
convex objective. The appeal of our algorithm is the ability
to find the solution by dynamically adjusting the amount
of communication during the communication phase locally
at each node. This can lead to significant reductions in the
amount of information communicated, and communication
costs can be critical in large scale problems where transmitting
data over a network could be very slow. The adaptivity of
each node’s communication behavior is controlled by a tunable
parameter which also controls the desired final accuracy of the
solution. As a byproduct, our distributed algorithm endows the
nodes with the ability to adaptively determine when to stop
computing and transmitting information without using a cen-
tralized coordinator. Simulation results confirm that indeed we
can solve machine learning tasks in a distributed manner while
dramatically reducing the number of messages exchanged.

The need for distributed optimization algorithms has be-
come prominent in the area of machine learning since the size
of available datasets has been consistently pushing computers
to their limits [1]. The recent work of Agarwal et al. [2], in
which a classifier is trained using 1,000 machines on a human
genome dataset with 50,000,000 training instances (roughly
3 Terabytes in size) is instructive of this trend. Out of the

numerous distributed approaches that have been proposed in
the literature, in this work we focus on the class of consensus-
based distributed optimization algorithms [3]–[8]. At a high
level all these algorithms employ a local gradient-based op-
timization scheme combined with a communication phase
where the nodes exchange information with their neighbors
in order to drive their local states towards a consensus on the
global optimum. These algorithms are particularly suitable for
optimizing separable objectives of the form

minimize
x∈X

F (x) =
1

n

n∑
i=1

fi(x) (1)

where each component fi(x) in (1) is assigned to a different
node in the network (i.e., the data is partitioned among
the nodes), and the nodes interleave local gradient-based
optimization updates with communication using a consensus
protocol to collectively converge to a minimizer of F (x).
Consensus-based algorithms are attractive because they make
distributed optimization possible without requiring centralized
coordination or significant network infrastructure (as opposed
to, e.g., hierarchical schemes [9]). In addition, they combine
simplicity of implementation with robustness to node failures
and are resilient to communication delays [10].

The main drawback of consensus-based algorithms comes
from the potentially high communication cost associated with
distributed consensus. This problem can be quite significant in
machine learning applications where the data being exchanged
over the network could be several MB in size. To decrease
the communication overhead, we describe an algorithm where
each node uses its own local rule to determine whether or not
to continue communicating with its neighbours. To that end,
we employ the idea of local silencing rules proposed in [11],
in combination with Distributed Dual Averaging (DDA) [3].
Using such a strategy at each node can result in a significant
reduction in communication which, in practice, could translate
into tremendous speedups (see, e.g., experiments in [2]). An
appealing aspect of our algorithm is the local nature of the
proposed approach; nodes make independent decisions based
on their current estimate of the progress towards the global
solution. To illustrate the ideas and benefits of the proposed
algorithm, we include an experimental evaluation using both
real and synthetic data.

579978-1-4799-0248-4/13/$31.00 ©2013 IEEE GlobalSIP 2013

The rest of the paper is organized as follows. Section II re-
views relevant background. Section III describes the proposed
algorithm in detail, and Section IV presents the experimental
evaluation and findings. The paper concludes with a summary
and possible future extensions in Section V.

II. BACKGROUND

This section provides necessary background on the two
building blocks of the proposed algorithm: local silencing rules
for distributed averaging, and distributed dual averaging. For
the rest of the paper we assume that we are given a network
of n nodes organized as a graph G = (V,E) with |V | = n.
The nodes are only allowed to exchange information over the
edges in the set E. For this paper, we restrict to the case of
pairwise interactions meaning that at any time only two nodes
communicate over an edge and exchange information.

A. Average Consensus with Local Stopping Rules

Assume that each of the n nodes holds an initial value
xi(0). The question of average consensus is how to use
communication over the edges of G to coordinate the nodes
so that they reach consensus on the average of the initial
values. If xi(t) is node i’s value at time t, we thus require
that xi(t) → x = 1

n

∑n
i=1 xi(0) as t → ∞. This very simple

problem can appear as a building block in a large variety of
signal processing tasks [12] including distributed optimization.

One simple and elegant distributed algorithm to solve the
average consensus problem is Randomized Gossip, first pro-
posed by Boyd et al. [13]. It is an asynchronous and fully
distributed algorithm which does not require routing as nodes
only communicate with their neighbours on the graph. The
communication overhead per node at each iteration is minimal
as each communication is between a pair of adjacent nodes.
Specifically, at each time instant, a node wakes up and selects
a neighbour at random. The two nodes update their values by
averaging. Over time, if the network remains connected, all
nodes’ values converge to the average of their initial values. It
is worth mentioning that the drawback of distributed averaging
algorithms is that their diffusive nature can lead to slow
convergence on some topologies such as grids and random
geometric graphs [13].

Given that gossip algorithms are fully distributed, a key
challenge is how to determine when the algorithm has con-
verged and the nodes can stop transmitting data. This is a
non-trivial task in the absence of any centralized coordination
mechanism. In the majority of the existing literature, if the
network size is known one can predefine a maximum number
of iterations based on worst-case upper bounds for the number
of transmissions required to reach a certain level of accuracy.
However, such bounds can be very loose, resulting in an
unavoidable waste of communication bandwidth. We employ
in this paper the results of [11] where a simple silencing rule
for randomized gossip is proposed.

Under the silencing rule, each node maintains an individual
counter. Whenever a node updates its value, it increases its
counter by one if its value does not change by more than a

threshold, τ > 0, and it resets the counter to 0 otherwise.
When the counter reaches an upper limit, C, the node still
responds to a gossip round initiated by a neighbouring node,
but it stops initiating gossip rounds itself. In [11], it is
shown that all nodes eventually stop transmitting and the final
accuracy of the results depends on the two parameters, τ and
C.

More specifically, let n be the number of nodes in the
network, |E| the number of edges, dmax, the maximum degree
of any node, and δ > 0 the desired accuracy. Let A denote the
adjacency matrix of G, and let D = diag(1TA) be a diagonal
matrix formed by the node degrees. The Laplacian matrix is
L = D −A. Let λ2 denote the second smallest eigenvalue of
the graph Laplacian.

Theorem 1 (Daher et al. [11]): By setting

C = dmax(log(dmax) + 2 log(n)) (2)

τ =

√
λ2δ2

4|E|(C − 1)2
(3)

all nodes eventually stop transmitting almost surely, and with
probability at least 1− 1/n, the error is bounded as

||x(K)− x̄|| ≤ δ (4)

where x(t) is the vector of node values at iteration t, and K
is the first iteration when all nodes stop transmitting.

B. Distributed Dual Averaging (DDA) [3]
DDA solves the problem (1). Each node i knows a function

fi(x) : Rd → R. Nodes communicate with one another using
the available communication channels indicated by the edge
set E. Each fi is assumed convex and Lipschitz continuous
with respect to the same norm ‖·‖; i.e., |fi(x)− fi(y)| ≤
L ‖x− y‖ ,∀x, y ∈ X . As a consequence, for any x ∈ X
and any subgradient gi ∈ ∂fi(x) we have ‖gi‖∗ ≤ L where
‖v‖∗ = sup‖u‖=1〈u, v〉 is the dual norm.

Let us select a 1-strongly convex function ψ : Rd → R such
that ψ(x) ≥ 0 and ψ(0) = 0. For example, take ψ(x) = ‖x‖22.
Also select a decreasing sequence of positive step sizes a(t) =
O(1√

T
). The adaptivity of the step size sequence is standard in

subgradient optimization methods to ensure convergence.1 We
also select a doubly stochastic matrix P = [pij] that respects
the structure of G in the sense that pij > 0 only if i = j or
(i, j) ∈ E. DDA proceeds as follows. Each node maintains a
primal variable xi(t) and a dual variable zi(t). At iteration t,
node i goes through a phase of communication followed by a
phase of computation described next:

1. Communicate: Send zi(t) to and receive zj(t) from
neighbors.

2. Compute: Update the primal and dual variables by setting

zi(t+ 1) =

n∑
j=1

pijzj(t)− gi(t) (5)

xi(t+ 1) =Πψ
X (zi(t+ 1), a(t)) (6)

1Standard conditions are that the step size sequence is square summable
but not summable.

580

where gi(t) ∈ ∂fi(xi(t)) is a subgradient of fi at xi(t), and
the projection operator Πψ

X (·, ·) is defined as

Πψ
X (z, a) = argmin

x∈X

{
〈z, x〉+

1

a
ψ(x)

}
. (7)

In [3] it is shown that, for the updates above, the local run-
ning average x̂i(T) = 1

T

∑T
t=1 xi(t) at every node i converges

to the optimum at a rate F (x̂i(T)) − F (x∗) = O(log(
√
nT)√
T

).
This version of DDA describes the algorithm with synchronous
updates where every node sends out its current dual variable to
all of its neighbours. This is exactly where the communication
overhead can become excessive. It is proven however, that
DDA has the same convergence rate if a consensus protocol
such as randomized gossip is used [3, Theorem 3], and we
capitalize on this property in the next section where we
describe the proposed algorithm.

III. PROPOSED ALGORITHM

Our proposed algorithm is given in pseudo-code in Alg. 1.
Nodes initialize zi(0) = 0, z̃i = 0, and counti = 0. Each node
i first updates its estimate xi(t) and local running average
x̂i(t) and then takes a gradient step. If this gradient step
was significant enough (as indicated by the selected threshold
τ) relative to the last time it was updated due to incoming
information from a neighbour (recorded by the intermediate
variable z̃i), then the node resets its local counter to zero,
meaning that this node should communicate (i.e., “something
important to say”). In the opposite case, the node increases its
counter taking a step closer to silence. If the node’s counter is
low enough, then the node remains active and communicates
its information to a random neighbour. As a result, both nodes
update their dual variables and set them to the average of the
two. After that, both nodes must check if the new information
was significant enough or if they need to take another step
towards silence.

The adaptivity of the nodes to the current state of the
underlying optimization procedure is what leads to increased
sparsity of communication and thus significant savings in
execution time when there is limited bandwidth and/or large
amounts of information to be transmitted over the network.
The more the nodes enter their silence mode, the more
time they spend in local gradient updates and the less time
they spend communicating. As a pleasant side effect, the
algorithm benefits from the local stoping rules theory and all
nodes eventually terminate automatically without centralized
coordination.

There are a number of subtleties in employing the stopping
rules in a distributed optimization algorithm. First of all,
notice that for optimization we need to keep an update of
the estimates xi(t) and x̂i(t) at each node but the consensus
phase involves updates in the dual variables. Since the local
gradient step moves the estimates and the dual variables,
this is a version of a dynamic consensus problem where the
consensus value moves. Most importantly, the dual variables
are vectors which continuously grow in magnitude. Thus, one
needs to be careful when applying the silencing rule since the

Algorithm 1 DDA with Adaptive Communications

xi(t) = Πψ
X (zi(t), a(t))

x̂i(t) = 1
t

∑t
t=1 xi(t)

zi(t+ 1) = zi(t) + gi(t)

if ‖z̃i−zi(t+1)‖
‖z̃i‖ ≤ τ then

counti = counti + 1
else

counti = 0
end if
if counti < C then

select random neighbour j
/∗ Repeat the following steps for i and j ∗/
zi(t+ 1) = zj(t+ 1)← zi(t+1)+zj(t+1)

2

if ‖z̃i−zi(t+1)‖
‖zi(t+1)‖ ≤ τ then
counti = counti + 1

else
counti = 0

end if
end if
if counti ≤ C then

z̃i = zi(t+ 1)
end if

threshold τ cannot be applied as is in this dynamic situation.
The solution is to normalize the norm of the difference in
dual variables and thus make the notion of innovation and
“enough change” independent of the magnitude of the dual
variables. Finally, notice that, as also explained in [13], the
type of pairwise averaging just described does yield (time-
varying) doubly stochastic matrices as required by the DDA
convergence theory.

IV. SIMULATIONS

To validate that the proposed algorithm works as described
in the previous section, we present two simulations: one with
synthetic data and one using the well know MNIST digits that
are widely used in classification tasks. For both scenarios, we
consider a network of n = 10 nodes organized as a realization
of a random geometric graph. We repeat each run 10 times and
average the results.

A. Synthetic Data

For the first set of experiments, we feed each processor with
a stream of i.i.d. data to emulate the solution of a least squares
problem online. For node i, the instantaneous cost function is
defined as

fi(x) = (x− ci)T (x− ci), x ∈ R20 (8)

where ci = i1+ε. In other words each node receives data that
define a quadratic cost, and each data point ci is corrupted by
some uniform noise ε ∈ [0, 1]. For this problem we know the
optimal solution, and thus we can track the mean square error
(MSE). Notice that the centers of the quadratics are different,
so without communication the nodes cannot converge to the

581

0 200 400 600 800 1000101

102

103

104

Iterations

M
SE

 No Communication
 o = 0.1
 o = 0.05
 o = 0.01

Fig. 1. Distributed optimization with adaptive communications on synthetic
data. Network of 10 nodes.

same globally optimal solution. This is clearly seen in Figure
1. In addition, the figure shows that as we increase the value
for τ the discrepancies we allow between the nodes are
larger. These results should be examined in combination with
Table I where we count the total number of transmissions
cumulatively among all nodes after 1,000 iterations. As we
see with τ = 0.01 the nodes end up communicating at
every iteration while increasing this threshold can significantly
reduce that communication overhead.

B. MNIST Digits Data

As a proof of concept for a real machine learning problem,
we used the MNIST digit dataset to train an SVM classifier.
The data consist of 60,000 handwritten 28× 28 pixel images
of the ten digits 0 through 9. Each image is represented as
a vector wj ∈ R784. The goal is to train a classifier that
can correctly predict the label of an unseen digit image. To
simplify the exposition, we design a two-class problem where
any digit wj below 5 is labeled negative (yj = −1) and
every digit above 5 is labeled positive (yj = +1). The SVM
objective is the hinge loss, given by

fi(xi) =

m∑
j=1

max{0, 1− yj|i · wTj|ixi},

where (wj|i, yj|i) is the jth data point at node i. We separate
50,000 data points for training and kept the rest as an indepen-
dent test set. Thus, each node in our network has access only
to 5,000 data points that are processed in an online/incremental
fashion. Figure 2 shows that convergence is very slow without
communication. However, when the nodes are allowed to
exchange information, convergence is much faster. In addition,
the nodes all converge to the same solution so the adaptivity of
the threshold and the induced sparsity in communication does
not affect the final solution. On a real distributed hardware,
saving more than 50% of the transmissions (see Table I) could
lead to a significantly faster runtime.

V. CONCLUSIONS AND FUTURE WORK

We present a consensus-based distributed optimization al-
gorithm that uses local rules at the nodes to reduce the amount
of unnecessary communication. This could be very beneficial
in terms of runtime and bandwidth utilization when applied

0 2000 4000 6000 8000 100000.1

0.15

0.2

0.25

0.3

0.35

Iterations

Te
st

 E
rr

or

 No Communication
 o = 0.1
 o = 0.05
 o = 0.01

Fig. 2. Distributed optimization to train an SVM classifier for the MNIST
digit data with Noodle. Network of 10 nodes.

τ = 0.1 τ = 0.05 τ = 0.01
Synthetic 131934 179636 200000
MNIST 84974 161056 200000

TABLE I
TOTAL NUMBER OF TRANSMISSIONS ON A 10 NODE RANDOM NETWORKS.

to large scale distributed problems. We show, in simulations
using both synthetic and real data, that the proposed approach
reduces the amount of communication without significantly
increasing the error. In the future we would like to conduct a
formal convergence analysis of the algorithm.

REFERENCES

[1] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up Machine
Learning, Parallel and Distributed Approaches. Cambridge University
Press, 2011.

[2] A. Agarwal, O. Chapelle, M. Dudik, and J. Langford, “A reliable
effective terascale linear learning system,” arXiv:1110.4198v2, 2012.

[3] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling,” IEEE
Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606, 2011.

[4] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, January 2009.

[5] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental
subgradient method for distributed optimization in networked systems,”
SIAM Journal on Control and Optimization, vol. 20, no. 3, 2009.

[6] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic
subgradient projection algorithms for convex optimization,” Journal of
Optimization Theory and Applications, vol. 147, no. 3, pp. 516–545,
2011.

[7] J. Chen and A. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,” IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 4289–4305, August 2012.

[8] D. Jakovetic, J. Xavier, and J. M. Moura, “Fast distributed gradient
methods,” arXiv:1112.2972v1, 2011.

[9] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimiza-
tion,” in Neural Information Processing Systems, 2011.

[10] K. I. Tsianos and M. G. Rabbat, “Distributed dual averaging for
convex optimization under communication delays,” in American Control
Conference (ACC), 2012.

[11] A. Daher, M. Rabbat, and V. Lau, “Local silencing rules for randomized
gossip,” in Distributed Computing in Sensor Systems and Workshops
(DCOSS), 2011 International Conference on, june 2011, pp. 1 –8.

[12] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proceedings of
the IEEE, vol. 98, no. 11, pp. 1847 – 1864, November 2010.

[13] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, pp.
2508–2530, 2006.

582

